
J .  Fiuid Hech. (1966), vol. 25, pmt 1, pp .  199-205 

Printed in Great Britain 
199 

Some remarks on ‘Perturbation solutions 
in laminar boundary theory’ 

By HERBERT FOX AND SHUN CHEN 
New York University, Bronx, New York 

(Received 20 September 1965) 

A procedure is introduced to extend the usefulness of some perturbation solu- 
tions previously presented by Libby & Fox (1963) and Fox & Libby (1964). 
The perturbations are now formulated about a Blasius solution with an un- 
known origin. This origin, an additional degree of freedom, is selected, in the 
spirit of local similarity, so that it will yield a better approximation to the 
initial profile. With this modification the basic solution will handle a much wider 
class of problems successfully. Numerical examples are presented to demonstrate 
the improved accuracy and applicability of this new scheme. 

1. Introduction 
Some further considerations related to the perturbation-type solutions 

presented by Libby & Fox (1963) and Fox & Libby (1964) (hereafter referred to 
as Part 1 and Part 2) are discussed here. Although not quantitatively indicated, 
these previous solutions have some limitations with regard to the initial-value 
problems that can be treated. The initial profiles for, say, the momentum 
equation solutions must be close to Blasius; clearly this places a restriction on 
the problems which can be handled with some degree of accuracy. Indeed even 
for the case of small deviations from the Blasius function, solutions presented in 
Part 1 indicate that resort had to be made to second-order solutions to obtain 
reasonable results. 

Techniques which can improve the accuracy of such initial-value problems 
are investigated here. These methods make use of the fact that the origin of the 
Lees co-ordinates ( 8 , ~ )  is unknown. In  the previous papers it had been assumed 
that this origin and that of the initial profile were coincident. It is unnecessary, 
however, that this be true; indeed in some cases it appears undesirable. Further, 
it  is recognized by the parabolic nature of the equation, that the flow down- 
stream can be completely specified by the initial profile without reference to its 
upstream history. The object of the present paper is the formulation of some 
suitable criteria permitting the determination of this origin and a discussion of the 
advantages of doing so. 

In  addition some simple applications are presented demonstrating the useful- 
ness of this procedure. The results are compared with those previously presented 
in Part 1 and with those more accurate solutions, where available. 
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2. Analysis 
The basic problem is formulated for the momentum equation; the energy 

equation may be treated similarly. Consider then the momentum equation 
describing a laminar boundary layer with a uniform external stream in terms of 
the Levy-Lees variable 7 and s (cf. Lees 1956 and Hayes & Probstein 1959) 
whenpp = const.: 

f?I?I?l fffq?) = 2s(f,f?p -f,,f& (2.1) 

where 7 = peuerj(2s)-’iu (P/pe) dy, (2.2) 
0 

The transformation (2.3) is in a different form from that appearing in Parts 1 
and 2; here the origin si, appears explicitly and is, for the moment, unknown. 
The associated boundary and initial conditions are : 

f ( s ,O)  =f,(s,O) = 0, f?)(s,w) = 1.0, fT(%,7) = q?), (2.4) 

where FV(q) is a given initial profile. 
The solution to (2.1) and (2.4) inay be effected by proceeding as in Part 1 and 

assuming 
(3.5) 

where fo and fl, satisfy the following equations, boundary, and initial conditions: 

f7(4 7) W f ;  +f1,1& 7) + . . - 9  

f [  +fofo” = 0, 

fl,l,,, +fofl,l,v +f;fl,l = 2s(f;fl,lsq -f&,1J, 

f 0 W  =fm = (O), f ; @ )  = 1, 

fl,l(% 0) = fl,l& 0) = fl,& 00) = 0, 

fl,l,(% 7) = q 7 )  -f& 

(2 .6 )  I 
The solution to the first of (2.6) is clearly the Blasius function, while that of the 
second is given in Part 1 as 

(2.7) 

where the A l , n  coefficients may be found by application of the orthogonality 
condition for Nl,n(7) so that the initial conditions are satisfied; then- 

Consider now the determination of si. It appears that when F7 - f; is small in 
some sense, i.e. when the initial profile is close to some Blasius solution with an 
origin to be determined, then the A , ,  constants are small and the series repre- 
sented by (2.7) converges rapidly. Thus, as a general rule, si is to be calculated 
so that F7 - f A is indeed small and consequently so that the initial profile is well 
fitted. 
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It is evident that there exist many methods to satisfy this criterion provided 
that a suitable definition for deciding the size of (FT - fh) is available. Some sug- 
gestions for the determination of s, follow. Noting that the integral in (2.8) 
contains s, implicitly, it can be required that 

C A:,n = minimum. 

This would provide a minimum norm for the series (2.7). To insure a rapid decay 
for large s (or x ) ,  s, can be determined so that A , ,  = 0. For an approximate 
measure of si the boundary layer, displacement, or momentum thickness for 
F? and fh can be equated. It is this last, engineering approach, that will be 
presented here, although studies are being undertaken to determine a syste- 
matic procedure for the calculation of si in these and similar problems. 

For clarity in the following discussion consider a two-dimensional incom- 
pressible flow and determine si so that the displacement thicknesses of the Blasius 
solution and of the initial profile are equal. The initial profile can be assumed 
to be given as a function of y at a station x = xi. A transformation (x, y )  -+ (so,qo) 
can be applied to the profile where (so,qo) are known and where 

R 

qo is given by (2.2) with s replaced by so, and where the external properties are 
arbitrarily taken to be identical to those of the Blasius solution. It is pointed out 
that this is a convenience and a consequence of the fact that it  is unnecessary to 
specify more than the initial profile and its location for a parabolic problem. 

If the initial profile in this new co-ordinate system is denoted by F&(q0), then 
for equal displacement thicknesses 

(2.10) 

where for clarity it is repeated here that s, is the unknown origin and where 
si.o = p,pu,uexi and is assumed known. The values of these integrals may be 
presumed known and thus (3.11) 

where a is a given constant. Note that if a = 1 arbitrarily, i.e. if the origin of the 
perturbation solutions is chosen to be that of the initial profile, the results of 
Part 1 are immediately recovered. To compute the new initial profiles the 
stretching from qo to q is required; clearly it is given by q = a*qo. The problem is 
then completely defined, i.e. F,(r) and can be computed and the resultant 
decay back to Blasius determined. Note that as a final test of the usefulness of‘ 
the scale factor a ,  inspection of the fit of the initial profile is required.? 

With this specific example in mind the extension to a more general procedure 
is evident. The constant a is determined first by application of any appropriate 

t It should be recognized that this general procedure is an application, in some sense, 
of the concept of local similarity (cf. Hayes & Probstein 1959), the perturbation term 
acting as the correction. It is suggested that this is the first attempt to treat initial-value 
problems by use of this technique. 
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scaling condition and the Al, coefficients computed.? The physically interest- 
ing parameter, the skin friction, may be computed by 
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(2.12) 
n 

Here cfo is interpreted as the skin friction that a Blasius solution would have if 
initiated from x = 0 to the x of interest, with s, the corresponding transformed 
streamwise co-ordinate. In  terms of physical variables, for any a, 

where 2 = (x/xi). The first bracket represents the locally similar approximation 
while the second is the result of a perturbation correction. It is pointed out 
that no mention has been made here of the second-order correction, i.e. fi,2(s, 7). 
The approximation indicated by (2.13) should be sufficient for most purposes 
since the deviations from the shifted Blasius solution are now presumed small 
and the initial profile is well matched. 

3. Applications 
In  Part 1 the problem was considered of a two-dimensional permeable wall, 

followed at x = xi by an impermeable surface. Of interest is the decay of the 
skin friction for x > x$ as indicated in (2.13). The initial profile, at the end of the 
porous surface, may be obtained from Low (1955) for a variety of injection rates. 

Consider first f, = - 0.5(2)-*, the problem presented in Part 1.8 The initial 
profile is indicated in figure 1 (a) as F,o(ro) and after application of the scaling 
suggested by (2.10)s as FT(r). It will be noted that the deviation of F,(r) from 
f ;  is now extremely small and the fit excellent. The resultant skin-friction 
distribution is shown in figure 1 ( b ) ,  where several other results of interest are 
also displayed. All these may be compared with the more accurate solution 
presented by Pallone (1961). Clearly the new solution provides results, in this 
case, at least as accurate as the second-order solution of Part 1. The results 
corresponding to only the locally similar approximation point out that this 
approximation alone is indeed reasonable. 

The corresponding results for a larger injection rate, - f, = 2-4 are shown in 
figures 2 (u) and ( 6 ) .  The deviation of F,o(qo) is now very significant and, in fact, 
this problem cannot be treated by strict application of the techniques of Part 1 ; 
it  will be discovered that the series (2.7) cannot represent the initial profile 
satisfactorily. However, performing the same scaling as before leads to a new 
F,(7) close tofh and to a good fit of the profile. The skin-friction results are again 
in reasonable agreement with the more accurate solution of Pallone. 

t The appropriateness of the particular matching used will be indicated by the sub- 
sequent fit of the initial profile. 

$ It is pointed out here that the results obtained in Part 1 are for -fw = 0.5 ( 2 ) 4  
and not for - fw = 0.5, as indicated therein. 

J This scaling guarantees equal displacement thickness for incompressible flows, 
or for the compressible case, it may be interpreted as determining si so that the velocity 
defects in the transformed plane are equal. 
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.FIGURE 1. (a)  Comparison of initial profiles for - f w  = 0.5(2)-6. 
( b )  Distribution of skin friction for - f w  = 0-5(2)-6. 

To acquire some feeling for the effects of different scaling procedures consider 
figure 3. Here the additional skin-friction results for the preceding problems 
were obtained by matching momentum thicknesses and initial shear stress. These 
are compared with the more accurate results of Pallone and with those obtained 
by application of (2.10); it is seen that, for this problem, the scheme as suggested 
in (2.10) is the most successful. Note that these results also manifest themselves 
in the fit of the initial profile. That this be true is crucial; it permits a decision 
a priori as to the appropriateness of the scaling procedure. 



204 Herbert Fox and Shun Chen 

1 *o 

0.8 

0.6 
z 

v 

0.4 

0.2 

n 

7 

6 

5 

4 
?17 

3 0  3 

7 '. 

1 

n 

1 -0 1.4 1.8 2.2 2-6 3.0 34 3.8 4.2 
( X I X O  

( b )  

FIGURE 2 .  (a )  Comparison of initial profiles for - fw = (2)-3.  
( b )  Distribution of skin friction for -fw = (2)-4. 

4. Concluding remarks 
Based on the concept of local similarity, an extension of a perturbation tech- 

nique for laminar boundary layers has been presented. This extension offers 
new utility to the original scheme and permits consideration of flows otherwise 
excluded. 
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It is recognized that the results presented arise from application of engineering 
techniques. Further studies in this general area are being undertaken to treat 
more rigorously the concepts presented here. 

FIGURE 3. Comparison of matching techniques. 
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